

SINGLA

A fast and most sensitive hybrid-pixel camera for Life Science applications

SINGLA

DECTRIS SINGLA for cryoEM and 3DED

Your precious biological samples deserve the most sensitive electron camera! DECTRIS SINGLA® excels with a DQE of 98% and 53% at 0 and Nyquist frequencies, respectively. With its 1k x 1k field of view, this hybrid-pixel, electron-counting camera is best suited for single-particle electron cryomicroscopy at 100 keV (cryo-EM) and 3D Electron Diffraction (3DED) applications^{1,2}.

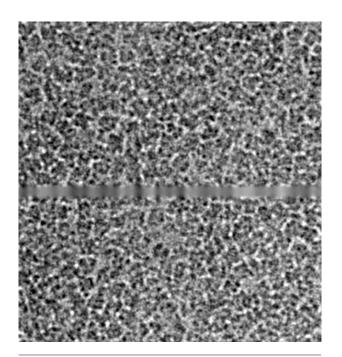
SINGLA offers a fast and dead-time-free readout speed of up to 4,500 frames per second. The combination of high speed with a superior dynamic range and full radiation hardness makes it the ideal camera for continuous rotation electron diffraction of small-molecule and protein microcrystals. The camera is bottom-mounted and compatible with JEOL and Thermo Fisher Scientific Transmission Electron Microscopes. Integration into serialEM enables protocols for automated tilt series and single-particle acquisition.

Technical Specifications

SINGLA

Frame rate (max.) [Hz]	2,250 at 16 bit 4,500 at 8 bit
Count rate capability (max.) [e-/s/pixel]	10 ⁷
Number of pixels	1028 x 1062
Pixel size (W x H) [μ m ²]	75 x 75
Sensor material	Silicon (450 µm)
Energy range [keV]	30 – 200
DQE(0) ³	0.98 at 100 keV 0.90 at 200 keV

All specifications are subject to change without notice.


¹ McMullan *et al.*, 2023, PNAS, 120 (49) e2312905120, https://doi.org/10.1073/pnas.2312905120

² Waterman et al., 2023, Structure 31, 1–8, https://doi.org/10.1016/j.str.2023.07.004

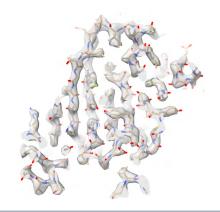
³ The values are based on reference 1 and S. Fernandez-Perez et al. 2021 JINST 16 P10034

Enabling fast and accurate structure determination of biological molecules by cryo-EM at 100 keV

Cryo-EM at 100 keV was pioneered by the groups of Chris Russo and Richard Henderson from the LMB Structural Biology Division in Cambridge, UK. Their 2023 publication in PNAS¹ demonstrates that high-resolution structures can be obtained quickly from a small number of particles.

Micrograph of human aldehyde dehydrogenase (ALDH1A1), collected at 100 keV with a purpose-built electron cryomicroscope consisting of a York Probe Sources 100 keV FEG, a JEOL JEM1400 electron microscope, and a DECTRIS SINGLA camera. See Reference 1 for details.

Number of 1k x 1k micrographs	416
Nominal magnification	250,000x
Pixel size (phys. & super-resolution)	1.683 Å, 0.841 Å
Defocus (average, range)	0.7 μm, 0.1 – 1.4 μm
Number of raw frames	16,384
Frames after grouping	64
Total electron dose	40.6 e ⁻ /Å ²
Resolution (FSC = 0.143)	2.9 Å
Rosenthal B-factor	130 Ų
PDB code	8PVH
EMDB code	17966


Data collection and analysis statistics.

Three selected reference free 2D class averages.

Final 3D map at 2.9 Å calculated from 64 frames (32,968 particles).

Map detail showing ALDH1A ß-sheet at 2.9 Å resolution.

DECTRIS AG

Taefernweg 1 5405 Baden-Daettwil Switzerland +41 56 500 21 00

sales@dectris.com support@dectris.com

www.dectris.com

DECTRIS USA Inc.

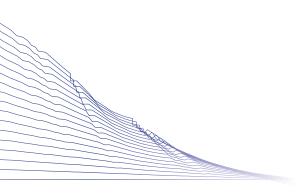
1500 Walnut Street, Suite 1630 Philadelphia, PA 19102 USA +1 215 384 3479

DECTRIS Japan K.K.

Nakagawa building 801 3-37 Higashi-Nobusue Himeji-shi Hyogo 670-0965 Japan +81 (0)79 280 9585

Registered Trademarks

"DECTRIS": AUS, CH, CN, DE, FR, IT, JP, KR, USA, UK


"DETECTING THE FUTURE": AUS, CH, CN, EU, JP, KR, USA, UK

"DECTRIS INSTANT RETRIGGER": AUS, CH, CN, EU, JP, KR, UK, USA

"DECTRIS SINGLA": AUS, CH, CN, EU, JP, KR, USA, UK

 $\ \, \mathbb{O}$ DECTRIS Ltd., all rights reserved • Subject to technical modifications January 2024

Read more

