DECTRIS®

detecting the future

™
RN
NN
\\“\\Q\\\C
=

==

DECTRIS Ltd.

5405 Baden-Daettwil
Switzerland
www.dectris.com

Document Version v1.3.2
© Copyright 2018
DECTRIS Ltd.

D E C TH I S ? detecting the future

CONTENT

CONTENT

DOCUMENT HISTORY

1

Current Document L e
Changes e e e e e e e e e e e e e e

GENERAL INFORMATION

1 Contact and Support o e e e e e e e e e e e
2 Explanation of Symbols
3 Warranty Information L e
4 Disclaimer e e e e e e e e e e e e e e

INTRODUCTION - RESTLIKE API
OPERATING THE EIGER DETECTOR SYSTEM

3.1 Acquiring Data L e e e e e e e e e e e e
3.2 Interface: http/REST o o e e e e e e e e e
3.2.1 URLS i it e e e e e e e e e e e e e e e e
3.2.2 Tree-Like View of RESOUICES v v v v v i e e e e e e e e e e e e
SIMPLON API
4.1 Detector Subsystem L e e e e e e e e
4.1.1 Detector Configuration Parameters
4.1.2 Detector Status Parameters e e e e e e
4.1.3 Detector Command Parameters @ @ i i i e e e e e e e
4.2 Monitor Subsystem e e e e e
4.2.1 Monitor Configuration Parameters,
4.2.2 Data ACCESS i i e
4.2.3 Monitor Status Parameters e e e
4.2.4 Monitor Command Parameters e e e e
4.3 Filewriter Subsystem e e
4.3.1 Filewriter Configuration Parameters i
4.3.2 Data ACCESS i i e
4.3.3 Filewriter Status Parameters e e e e e e e e
4.3.4 Filewriter Command Parameters e e
4.4 Stream Subsystem L e e e e e
4.4.1 Stream Configuration Parameters oo
4.4.2 Data ACCESS . . . v i i i e
4.4.3 Stream Status Parameters e e e e e e e e e e
4.4.4 Stream Command Parameters e e e e e e e e e
4.5 System Subsystem L e e e e e e e e
4.5.1 System Configuration Parameters e
4.5.2 System Command Parameters 0 i i i e e e e e e e e e e

ONO O w NNHRP B

i | 32

D E CTH I S ? detecting the future

DOCUMENT HISTORY

Current Document

Table 1: Current Version of this Document

I N N e e

v1.3.2 2018-05-29 release AM, D], LW SB, MM

Changes

Table 2: Changes to this Document

v1.0.0 2017-04-09 First Release.

v1.2.0 2017-09-04 EIGER2 Integration.

v1.3.2 2017-09-04 PILATUS3 and EIGER2 API Documentation integration.

EIGER R/X SIMPLON 1.6 v1.3.2 i | 32

API Reference

D E C TH I S ? detecting the future

1. GENERAL INFORMATION

1.1. Contact and Support

Address: DECTRIS Ltd.
Taefernweg 1
5405 Baden-Daettwil

Switzerland
Phone: +41 56 500 21 02
Fax: +41 56 500 21 01

Homepage: http://www.dectris.com/
Email: support@dectris.com

Should you have questions concerning the system or its use, please contact us via telephone, mail or
fax.

1.2. Explanation of Symbols

Caution #0

Caution blocks are used to indicate danger or risk to equipment.

R

Information #0

Information blocks are used to highlight important information.

EIGER R/X SIMPLON 1.6 v1.3.2 1] 32
API Reference

http://www.dectris.com/
mailto:support@dectris.com

D E C T H I S ? detecting the future

1.3. Warranty Information

Caution #1

Do not ship the system back before you receive the necessary transport and shipping
information.

b]

1.4. Disclaimer

DECTRIS has carefully compiled the contents of this manual according to the current state of knowl-
edge. Damage and warranty claims arising from missing or incorrect data are excluded.

DECTRIS bears no responsibility or liability for damage of any kind, also for indirect or consequential
damage resulting from the use of this system.

DECTRIS is the sole owner of all user rights related to the contents of the manual (in particular infor-
mation, images or materials), unless otherwise indicated. Without the written permission of DECTRIS
it is prohibited to integrate the protected contents in this publication into other programs or other
websites or to use them by any other means.

DECTRIS reserves the right, at its own discretion and without liability or prior notice, to modify and/or

discontinue this publication in whole or in part at any time, and is not obliged to update the contents
of the manual.

2|32

D E C TH I S ? detecting the future

2. INTRODUCTION - RESTLIKE API

The main objective of the SIMPLON API is to provide platform-independent control of EIGER detector
systems using a well-established standardized protocol. The RESTIlike API requires no additional soft-
ware to be installed on the detector control unit nor is access to the detector restricted to a specific
programming language. In order to define the state of the detector, trigger an exposure or request
an image file, an HTTP requests need to be transmitted to the server and the requested data may be
received within the HTTP response.

For instance consider the common detector control parameter count_time, which defines the duration
of a frame (i.e. the time the detector is counting X-rays). You may request the current state of
this parameter by entering its URL http://<address_of _dcu>/detector/api/1.6.0/config/count_time
in your favorite web browser’s address field, where <address_of _dcu> needs to be replaced by the IP
address of the detector computer. The SIMPLON API will respond with a JSON dictionary containing
information about the current setting, the limits and other useful information. Analogously, the URL
of the frame time is http://<address_of_dcu>/detector/api/1.6.0/config/frame_time.

This HTTP-based API is RESTlike, because every detector resource is uniquely identified by its URL.
A comprehensive definition of RESTful goes beyond the scope of this documentation. This documen-
tation is confined to a instruction on how to work with the SIMPLON API. The API is RESTlike rather
than RESTful, because it does not fulfill all requirements of a RESTful API.

Let’s have a further look at the sample request count_time. We have learned that the parameter is
mapped to a unique URL, and that the request is transferred to the server via HTTP. Besides the URL,
the HTTP request contains extra data. The HTTP verb or method defines which kind of action has to
be performed on the server. The SIMPLON API uses the verbs GET, PUT and DELETE. When entering
http://<address_of_dcu>/detector/api/1.6.0/config/count_time into your browser, your browser will
send a GET request to the server, which is meant to return a representation of the resource but,
by definition, must not change the resource itself. In our case, we receive the value of count_time.
The value of count_time may be changed by a PUT request on the same URL. The data itself that is
requested from the server or uploaded to the server, i.e. the value of count_time, is transferred in
the message body of the HTTP request. The SIMPLON API relies on JSON as its default messaging
data format. For instance, your browser may display the following string after you have issued a GET
request to the count_time parameter:

[1$_ JSON Response

{
"min" : 0.000002999900061695371,
"max" : 1800,
"value" : 0.5,
"value_type" : "float",
"access_mode" : "rw",
"unit" : "s"

}

non " on " on ”on

This is a JSON dictionary that contains the keys "“min”, "max”, "value”, "value_type"”, "access_mode"
and “unit”. From the value of the keys "value” and "unit” we find the value of the count_time to be
0.5 seconds.

EIGER R/X SIMPLON 1.6 v1.3.2 3] 32
API Reference

D E CTH I S ? detecting the future

Information #1

If you try this example and the browser prints instead “Parameter count_time does not
exist”, your detector may not have been initialized. The detector must be initialized
beforehand because the SIMPLON API needs to obtain information on the detector’s
configuration. The initialization process reads the configuration back from the detector.
In order to initialize the detector, you must send a PUT request to http://<address_of
dcu>/detector/api/1.6.0/command/initialize.

A PUT request cannot be sent from a web browser. For testing, you may either use the plu-
ginHttpRequester for Mozilla Firefox or the command line tool cURL. HttpRequester (version 2.0)
opens a window with a field "URL"”, where you have to enter http://<address_of_dcu>/detector/api/
1.6.0/command/initialize. Again, substitute <address_of dcu> by the IP of the EIGER detector con-
trol unit. Press PUT and wait for the reply, which may take some time. The API will respond with
status code 200 OK and an empty message body.

Now we want to set count_time to 1.0 seconds. To set set the count_time you have to upload the

value 1.0 (datatype float). The API assumes the value to be in seconds, because count_time has that
unit.

Information #2

There is no way to change the unit of a parameter.

In HttpRequester we set the URL to http://<address_of dcu>/detector/api/1.6.0/config/count_time.
Below you will find a field “Content to Send”. The content type must be changed to “application/json”
and the following string must be pasted into the content field.

[1$_ JSON Response

HttpRequester will upload a JSON dictionary with its only key "“value” set to 1.0. After pressing PUT,
in the return window on the right hand, we receive the list:

[1$_ JSON Response

"bit_depth_image",

"count_time",
"countrate_correction_count_cutoff",
"frame count_time",

"frame_period",

"nframes_sum"

This is the list of parameters that have been (implicitly) changed. This items in the list may vary
depending on your detector model. The SIMPLON API always keeps the configuration in a consistent
state. So if the count_time has been changed, the frame time (time between two successive images)
might needs to be changed as well, because frame time must be longer than the count time. A GET
request on http://<address_of _dcu>/detector/api/1.6.0/config/frame_time tells us that frame_time

EIGER R/X SIMPLON 1.6 v1.3.2 4| 32
API Reference

https://addons.mozilla.org/en/firefox/addon/httprequester/

D E C TH I S ? detecting the future

is now slightly longer than count_time.

So far we have seen two examples of addressing a detector resource via a URL. Parameters are con-
figured via GET/PUT requests on http://<address_of _dcu>/detector/api/1.6.0/config/<parameter>,
detector commands are transferred via PUT requests http://<address_of _dcu>/detector/api/1.6.0/
command/<command>. Finally the status of the detector may be queried via http://<address_of_
dcu>/detector/api/1.6.0/status/<statusparameter>. The term commonly used for the configuration,
status and command subsystem is task. In addition to the detector interface (i.e. module) there are
for example a filewriter interface (http://<address_of _dcu> /filewriter/api/1.6.0/<module>) and a
stream interface (http://<address_of _dcu>/stream/api/1.6.0/<module>). A resource thus is com-
posed of the module (e.g. detector, stream, filewriter etc.), the API and version references as well
as the task (e.g. config, status, command) and the parameter.

As an example the parameter count_time is child to the module detector and the task config.

Protocol Host Resource

Prefix

module version task parameter

http:// <address_of _dcu>/ <module>/ api/ <version>/ <task>/ <parameter>

As an example the parameter count_time is child to the module detector and the task config.

Protocol Host Resource
Prefix

module version task parameter

http:// 10.42.41.10/ detector/ api/ 1.6.0/ config/ count_time

The monitor interface lets you inspect images of the currently running measurement. The filewriter
interface lets you control how the data is stored in hdf5 files. In addition the hdf5 files may be received
from /data/. There are two hdf5 files. The master file contains header data and links to the image
data, which reside in series_1_data 000001.h5. Image series that contain more than one dataset
may be distributed over multiple data files, each containing a block of (e.g. 1000) images.

EIGER R/X SIMPLON 1.6 v1.3.2 51|32
API Reference

D E C TH I S ? detecting the future

3. OPERATING THE EIGER DETECTOR SYSTEM

3.1. Acquiring Data

In order to acquire data with an EIGER detector system, these steps need to be performed:

Initialize the detector

e Mandatory only once after any of the following events: power-up of the detector; power-up of
the detector control unit, restart of the DAQ service providing the SIMPLON API.

¢ Depending on system configuration, this may take up to 2 minutes
¢ Blocking operation, no other API operation may be performed until successful completion

e See Detector -> Commands -> Initialize

Configure the detector

¢ Although this does not result in error if not performed, the user should set the required param-
eters for the experiment

¢ If nothing is configured, defaults will be used

e See Detector -> Configuration

Arm the detector

e Although this does not result in error if not performed, the user should set the required param-
eters for the experiment

¢ If nothing is configured, defaults will be used

e See Detector -> Configuration

Trigger the detector
Information #3

Sending a "trigger” command is mandatory in software trigger mode (ints) and has to
be omitted in external enabled modes (exts, exte).

e This activates the actual data acquisition.

e See Detector -> Commands -> Trigger

Disarm the detector
Information #4

Depending on trigger mode the last acquired image (or the image, if only one image
was configured) is available only after a disarm command has been issued.

e Disables the trigger unit

e See Detector -> Commands -> Disarm

EIGER R/X SIMPLON 1.6 v1.3.2 6] 32
API Reference

D E C TH I S ? detecting the future

Repeating Acquistions

If a new acquisition is required, repeat these steps in the given order:

Configure (optional)
Arm (mandatory)
Trigger (mandatory for internal trigger, omit for external

trigger/enable)

Disarm (optional as of firmware > 1.5.11)

Information #5

The status of the EIGER detector system may be optionally checked during acquisition,

but detector status parameters can only be updated while the system is not acquiring
data.

Receiving Data

For receiving data, multiple options are available:

Writing and downloading HDF5 files via the filewriter interface (section 4.3)
Retrieving individual images via the monitor interface (section 4.2)

Retrieving the data as a stream via the stream interface (section 4.4)

3.2. Interface: http/REST

The interface to the EIGER detector system is defined through its protocol. The protocol is based
on the http/REST framework. This definition helps to cleanly isolate the detector system. Thus, no
DECTRIS software is needed on the user control computer. The main idea behind the http/RESTful
interface is the following:

A configuration parameter, a status message, a detector command etc. correspond to a RESTful
resource. Each resource has an URL.

A user can perform get or put operations on the URL. Special resources, for example filewriter
files, can also be deleted.

A get request returns the current value of the configuration parameter.
A put request sets the value of a configuration parameter.
A delete request deletes the resource.

Every configuration parameter has a corresponding data type (e.g. float or string). The data
type in a put request must agree. The type of the value of a parameter can be requested with
a get operation.

For every configurable parameter with numeric data type, the minimum and maximum value can
be requested if available. For enumerated data types, the available values can be requested.

Any put request changing parameters may implicitly change dependent parameters. Put will
always return a list of all parameters implicitly and explicitly changed.

1 The detector will disarm after an internally triggered (trigger_mode: ints) series has been completed.

7 32

D E CTH I S ? detecting the future

e If an invalid resource is requested, an HTTP error code is returned.

e The serialization format of the configuration parameter values is, by default, in the JSON format.
The syntax is described below. Larger datasets can be received in the hdf5 format.

3.2.1. URLs
To represent the resources of the SIMPLON API, URLs are used:

Table 3.2: API Modules and respective URLs

Detector Configuration of the detector and the readout system, control of

(section 4.1) data acquisition and requesting the detector status
http://<address_of _dcu>/detector/api/1.6.0/

Monitor Receiving single frames at a low rate.

(section 4.2) http://<address_of_dcu>/monitor/api/1.6.0/

Filewriter Configuration of the HDF5 filewriter.

(section 4.3) http://<address_of_dcu> /filewriter/api/1.6.0/

Stream Configuration of the stream interface.

(section 4.4) http://<address_of _dcu>/stream/api/1.6.0/

System Configuration and control of the system.

(section 4.5) http://<address_of _dcu>/system/api/1.6.0/

The URLs to configure the detector, to send a command to the detector and to request its status are:

http://<address_of_dcu>/detector/api/<VERSION>/config
http://<address_of_dcu>/detector/api/<VERSION>/command
http://<address_of_dcu>/detector/api/<VERSION>/status

A configuration parameter resource has the following URL:

http://<address_of_dcu>/detector/api/<VERSION>/config/<parameter_name>

For get requests, the image format can be chosen with the header item:

accept=<format>

Possible formats are JSON and, for data arrays, hdf5 and tiff as well. (MIME types application/json,
application/hdf5 and application/tiff). The header item “content-type” is set respectively in all re-
sponses.

EIGER R/X SIMPLON 1.6 v1.3.2 8] 32
API Reference

D E CTH I S ? detecting the future

Information #6

o= Default format is application/json. The default format will be used if no specific format is
requested. For small datasets application/json is recommended. For larger datasets, in
particular 2d arrays (ie. flatfields and pixel_masks), only application/tiff is supported,
other MIME types may provide experimental access.

EIGER R/X SIMPLON 1.6 v1.3.2 9] 32
API Reference

3.2.2. Tree-Like View of Resources

D E C TH I S ? detecting the future

Below table contains an interactive tree view of all resources. You may click on any field to get more

information about the resource in question.

Table 3.3: Tree-Like View of Resources (i.e. modules, tasks and parameters)

http://<address_of_dcu>/ detector/ api/<version>/config/

version

task

parameter

auto_summation
beam_center_x
beam_center_y
bit_depth_image
bit_depth_readout
chi_increment

chi_start

compression

count_time
countrate_correction_applied

countrate_correction_count_cutoff
data_collection_date
description
detector_distance
detector_number
detector_readout_time
element
flatfield
flatfield_correction_applied
frame_time
kappa_increment
kappa_start
nimages
ntrigger
number_of_excluded_pixels
omega_increment
omega_start
phi_increment
phi_start
photon_energy
pixel_mask
pixel_mask_applied
roi_mode
sensor_material
sensor_thickness
software_version
threshold_energy
trigger_mode
two_theta_increment
two_theta_start
wavelength
X_pixel_size
X_pixels_in_detector
y_pixel_size
y_pixels_in_detector

EIGER R/X SIMPLON 1.6
API Reference

v1.3.2

10 | 32

D E CTH I S ? detecting the future

Table 3.3: Tree-Like View of Resources (i.e. modules, tasks and parameters) - continued

module version task parameter
status/ state
error
time

board_000/th0_temp
board_000/th0_humidity
builder/dcu_buffer_free

command/ initialize
arm
disarm
trigger
cancel
abort
status_update

monitor/ api/<version>/config/ mode
buffer_size

status/ state
error
buffer_fill _level
dropped
next_image_number
monitor_image_number

command/ clear
initialize

filewriter/api/<version>/config/ mode
transfer_mode
nimages_per_file
image_nr_start
name_pattern
compression_enabled

status/ state
error
time
buffer_free

command/ clear
initialize

stream/ api/<version>/config/ mode
header_detail
header_appendix
image_appendix

status/ state
error
dropped

command/ initialize

system/ api/<version>/config/

command,/ restart

EIGER R/X SIMPLON 1.6 v1.3.2 11] 32
API Reference

D E CTH I S ? detecting the future

Table 3.3: Tree-Like View of Resources (i.e. modules, tasks and parameters) - continued

module version task parameter

EIGER R/X SIMPLON 1.6 v1.3.2 12] 32
API Reference

D E CTH I S ? detecting the future

4. SIMPLON API

Caution #2

Undocumented keys might be available in all modules. Using those keys is strongly
discouraged. Undocumented features are subject to change. No official support is pro-
vided for undocumented features and no warranties are provided for the functionality
of such features.

R

4.1. Detector Subsystem

The detector subsystem has the base URL:

http://<address_of_dcu>/detector/api/<version>

It is used to configure the detector, to request its status and send control commands.

4.1.1. Detector Configuration Parameters

The user can set the parameters listed below. The base path to the resource is always:

<base_path> = http://<address_of_dcu>/detector/api/<version>/config/
<uri> = <base_path>/<parameter>

Table 4.1: Detector Config Parameters

Parameter Data
Type

auto_summation bool Enables (True) or disables (False) auto-
summation. Should always be enabled.

beam_center_x float rw Beam position on detector in pixels.
beam_center_y float rw Beam position on detector in pixels.
bit_depth_image int r Bit depth of generated images.
bit_depth_readout int r Bit depth of the internal readout.
chi_increment float rw Chi increment per frame.

chi_start float rw Chi start angle (start angle of the first

frame) for an exposure series.

EIGER R/X SIMPLON 1.6 v1.3.2 13] 32
API Reference

Table 4.1: Detector Config Parameters - continued

DECTRIS®

detecting the future

Parameter Data
Type

compression string Defines the compression algorithm
used. Allowed options are /z4 and bs/z4.
Information #7
EZ To ensure highest stability at full
frame rates, DECTRIS strongly
advises using bsl/z4 compres-
sion.
For enabling and disabling compression
see section 4.3.1 Filewriter Configura-
tion compression_enabled).
count_time float rw Exposure time per image.
countrate_correction_applied bool rw Enables (True) or disables (False) coun-
trate correction. Should always be en-
abled. See the User Manual for details.
countrate_correction_count_ unit r Maximum number of possible counts af-
cutoff ter count rate correction.
data_collection_date string rw Date and time of data collection. This is
the time when the ARM command was
issued.
description string r Detector model and type.
detector_distance float rw Sample to detector distance.
detector_number string r Detector serial number.
detector_readout_time float r Readout dead time between consecutive
detector frames.
element string rw Sets parameter photon_energy to the K-
alpha fluorescence radiation energy of
an element.
flatfield float[][] rmw Flatfield correction factors used for flat-
field correction. Pixel data are multiplied
with these factors for calculating flatfield
corrected data.
flatfield_correction_applied bool rw Enables (True) or disables (False) flat-
field correction. Should always be en-
abled.
frame_time float rw Time interval between start of image ac-
quisitions. This defines the speed of
data collection and is the inverse of the
frame rate, the frequency of image ac-
quisition.
kappa_increment float rw Kappa increment per frame.
EIGER R/X SIMPLON 1.6 v1.3.2 14| 32

API Reference

Table 4.1: Detector Config Parameters - continued

D E C TH I S ? detecting the future

Parameter Data
Type

kappa_start

float

Kappa start angle (start angle of the first
frame).

nimages

unit

rw

Number of images. See the User Manual
for details.

ntrigger

unit

rw

Number of triggers. See the User Man-
ual for details.

number_of_excluded_ pixels

unit

Total number of defective, disabled orin-
active pixels.

omega_increment

float

r'w

Omega increment per frame.

omega_start

float

rw

Omega start angle (start angle of the
first frame).

phi_increment

float

r'w

Phi increment per frame.

phi_start

float

r'w

Phi start angle (start angle of the first
frame).

photon_energy

float

r'w

Energy of incident X-rays.

pixel_mask

unit[][]

A bit mask that labels and classifies pix-
els which are either defective, inactive
or exhibit non-standard behavior

Bit 0: gap (pixel with no sensor)

Bit 1: dead

Bit 2: under responding

Bit 3: over responding

Bit 4: noisy

Bit 5-31: -undefined-

Information #8

EZ Please note that the actual inte-
ger value of a pixel in the mask
depends on which bits are set,
e.g. a dead pixel has the value
2"1=2 and an over responding
pixel 2"3=8.

pixel_mask_applied

bool

rw

Enables (True) or disables (False) apply-
ing the pixel mask on the acquired data.
If True (default), pixels that have a cor-
responding bit set in the pixel_mask are
flagged with (2"bit_depth_image)-1. If
disabled, the pixel mask needs to be ap-
plied at the point of data processing.

EIGER R/X SIMPLON 1.6
API Reference

v1.3.2

15| 32

Table 4.1: Detector Config Parameters - continued

D E C TH I S ? detecting the future

Parameter Data
Type

roi_mode string Selects the region of interest (ROI)!.
When ROI is disabled, the entire active
area is read out. The “4M” ROI mode
enables higher frame rates. Please refer
to the User Manual for further details.

sensor_material string r Material used for direct detection of X-
rays in the sensor.

sensor_thickness float r Thickness of the sensor material.

software_version string r Software version used for data acquisi-
tion and correction.

threshold_energy float rw Threshold energy for X-ray counting.
Photons with an energy below the
threshold are not detected. See the User
Manual for details.

trigger_mode string rw Mode of triggering image acquisition.
See the User Manual for details.

two_theta_increment float rw Two theta increment per frame.

two_theta_start float rw Two theta start angle (start angle of the
first frame).

wavelength float rw Wavelength of incident X-rays. See the
User Manual for details.

X_pixel_size float r Size of a single pixel along x-axis of the
detector.

X_pixels_in_detector unit r Number of pixels along x-axis of the de-
tector.

y_pixel_size float r Size of a single pixel along y-axis of the
detector.

y_pixels_in_detector unit r Number of pixels along y-axis of the de-

tector.

JSON Serialization

Meta information in the body of the request and in the reply from the HTTP server are serialized in
the JSON format and described in the table below.

The returned JSON of a get request string contains a subset of the fields below. Only fields which are
applicable for a given resource are present in the returned JSON. For hdf5 objects, the JSON metadata

is stored with hdf5 attributes.

1 Only available on DECTRIS EIGER X 9M / 16M systems.

EIGER R/X SIMPLON 1.6

API Reference

v1.3.2

16 | 32

D E C TH I S ? detecting the future

Table 4.2: Key Value Pairs for Detector Config Parameters (GET)

"value” <parameter_value> The value of the configuration parameter. Data type
can be int, float, string or a list of int or float. Two-
dimensional arrays are returned as darrays (see text
below). Invalid or unknown values are represented
as “null” or as empty string, list, or array.

"value_type” <string> Returns the data type of a parameter. Data types
are bool, float, int, string or a list of float or int.
Invalid or unknown values are represented as “null”
or as empty string, list, or array.

"min” <minimal_parameter Returns the minimum of a parameter (for numerical
_value> datatypes).
"max” <maximal_parameter Returns the maximum of a parameter (for numerical
_value> datatypes).
"allowed_values” <list_of allowed Returns the list of allowed values. An empty list
_values> indicates there are no restrictions.
"unit” <string> The unit of the parameter.
"access_mode” <string> String, describing read, and/or write access to re-
source. When not available, the access _mode is
” 4
rw”.

Put requests send a body serialized in the JSON format. Arrays may be put as hdf5 objects. The
HTTP header item content-type must be set appropriately. The JSON string may contain the following
keywords:

Table 4.3: Key Value Pairs for Detector Config Parameters (PUT)

"value” <parameter_value> The value of the configuration parameter. Data type
can be int, float, string or a list of int or float. Two-
dimensional arrays are returned as darrays (see text
below).

Alternatively you can put larger datasets and images as hdf5 files.

The return body of a put request is:

Table 4.4: Return Body of PUT Requests

None <changed_parameters> A list of all resources that are also affected by the
put configuration parameter.

darray

Two-dimensional arrays (pixel_mask, flatfield) are exchanged as darrays as defined below:

EIGER R/X SIMPLON 1.6 v1.3.2 17] 32
API Reference

D E CTH I S ? detecting the future

”__darray__": <VERSION>, "type”: <type>, "shape”: [<width>,<height>], “filters”:["base64”], “data”:
<base 64 encoded data>

where <VERSION> is the darray version ([major, minor, patch]), <type> is either "<u4” or "<f4”
(little endian encoded 4 byte unsigned int or float) and <base 64 encoded data> contains the base

64 encoded data.

Remarks:

e It is highly recommended to change a configuration by putting each parameter separately. Do
NOT upload a full configuration in one step to the config URL. This will only succeed if the configu-
ration is valid and consistent. Uploading an inconsistent configuration (e.g., elementis configured
to Cu and energy should be set to 7400 eV) leads to undefined behavior.

e The order in which parameters are put is important, as parameters can influence each other.

e A base configuration can be stored on the user computer by using the HTTP header item ac-
cept=application/hdf5 on the base URL. This configuration is consistent and valid and can be
uploaded in one step.

Example - Setting photon_energy

As already mentioned, when setting a value, the DCU returns the names of the parameters that were
implicitly changed to maintain a consistent detector configuration in the reply to the set request.
The following example of setting the photon energy to 8040 eV uses python libraries as a web client
to send HTTP requests:

[1$_ Python Code

import json

Imports "JSON" library

import requests

Imports "requests" library

dict_data = {'value':8040.0}

Prepare the dictionary (a "value" with the value 8040.0)

data_json = json.dumps(dict_data)

Convert the dictionary to JSON

r = requests.put('http://<address_of_dcu>/detector/api/<version>/config/photon_energy', data
=data_json)

Execute the request on the config value "photon_energy" (REPLACE <ADDRESS_of_DCU> and <
VERSION> with the values of YOUR system)

print r.status_code

Print the http status code (NOTE: Only http code 200 is 0K, everything else is an error)

print r.json()

Print the returned JSON string. (Containing the names of the subsequently changed values)

The code will return the following output:

[1>_ Return Value

200
{["threshold_energy", "flatfield"]}

The returned HTTP code “200” indicates successful completion of the put request.

The JSON string “["threshold_energy”, "flatfield”]” indicates that, resulting from the photon energy
change, the threshold energy and the applied flatfield were also changed.

EIGER R/X SIMPLON 1.6 v1.3.2 18 | 32
API Reference

D E CTH I S ? detecting the future

4.1.2. Detector Status Parameters

Status parameters are read only. The base path to the resource is:

<base_path> = http://<address_of_dcu>/detector/api/<version>/status
<uri> = <base_path>/<parameter>

Status parameters are measured values which might change without user interaction. They represent
the operational conditions.

Status Information

Table 4.5: Detector Status Parameters

Parameter Data
Type

state string Possible states: na (not available),
ready, initialize, configure, acquire, idle,
test, error.

Information #9
E% State is "na”, when the DCU is

booted or the acquisition service
was restarted.

error string[] r Returns list of status parameters causing
error condition.

time date r Returns actual system time.

board_000/thO_temp float r Temperature reported by temperature
sensor.

board_000/thO_humidity float r Relative humidity reported by humidity
sensor.

builder/dcu_buffer_free float r Percentage of available buffer space on
the DCU.

JSON Serialization

Get requests have no body. The returned JSON of a get request string contains a subset of the fields
below. Only fields which are applicable for a given resource are present in the returned JSON.

Table 4.6: Key Value Pairs for Detector Status Parameters (GET)

"value” <parameter_value> The value of the configuration parameter. Data type
can be single type or list of int, float or string. Invalid
or unknown values are represented as “null” or as
empty string, list, or array.

"value_type” <string> Returns the data type of a parameter.

EIGER R/X SIMPLON 1.6 v1.3.2 19] 32
API Reference

D E C TH I S ? detecting the future

Table 4.6: Key Value Pairs for Detector Status Parameters (GET) - continued

JSON Key JSON Value Description

"unit” <string> The unit of the parameter. The returned data type
may only be valid if a valid value for this parameter
is known.

"time” <date> Timestamp for when the value was updated.

"state” <state> invalid, normal, critical, disabled

“critical_limits” <list_containing_ Returns the minimum and maximum error threshold

minimal_and_maximal_ for a parameter if it is a numerical value type.

parameter_value>

“critical_values” <list_of critical_ Returns the list of values treated as error conditions.
values> An empty list indicates there are no states causing
an error condition.

EIGER R/X SIMPLON 1.6 v1.3.2 20| 32
API Reference

D E CTH I S ? detecting the future

4.1.3. Detector Command Parameters

Command parameters are write only. The base path to the resource is:

[1$_ Python Code

<base_path> = http://<ADDRESS_of_DCU>/detector/api/<VERSION>/command/
<uri> = <base_path>/<parameter>

Table 4.7: Detector Command Parameters

initialize Initializes the detector.

arm sequence_id: int w Loads configuration to the detector and
arms the trigger unit.

disarm sequence_id: int w Writes all data to file and disarms the
trigger unit.
trigger - w Starts data acquisition with the pro-

grammed trigger sequence.

cancel sequence_id: int w Stops the data acquisition, but only af-
ter the next image is finished.

abort sequence_id: int w Aborts all operations and resets the sys-
tem immediately. All data in the
pipeline will be dropped.

status_update - w Update detector status.

If an error occurs an HTTP error code is returned. In this case, please download the API log, which
can be accessed by the web interface of the DCU and contact support@dectris.com.

The trigger command can also accept an argument in the put request - the count_time - if used in
trigger_mode inte (internal enable).

4.2. Monitor Subsystem

The monitor interface is used to inspect single frames. This is a low performance and low bandwidth
interface, and thus should only be used at low frame rates. For high frame rates (>10Hz), usage of
either the filewriter or the streaming interface is advised. In order to use the monitor interface, it
must first be configured. The base URL for the Monitor API is:

[1$_ Python Code

http://<address_of_dcu>/monitor/api/<version>

EIGER R/X SIMPLON 1.6 v1.3.2 21| 32
API Reference

mailto:support@dectris.com

D E CTH I S ? detecting the future

4.2.1. Monitor Configuration Parameters
The configuration is applied at the URL:

<base_path> = http://<address_of_dcu>/monitor/api/<version>/config
<uri> = <base_path>/<parameter>

with the following commands:

Table 4.8: Monitor Config Parameters

Parameter Data
Type

mode bool Operation mode of the monitor, which
can be enabled or disabled. When en-
abled, a number of buffer_size images
are stored in the monitor buffer. The
monitor keeps old and drops new images
if the buffer is running full.

buffer_size int rw Number of images that can be buffered
by the monitor interface.

4.2.2. Data Access
A get request to the URL:

http://<address_of_dcu>/monitor/api/<version>/images/

returns a list of all available frames.

[[series, [id, id, ...11, ...]

During data taking, the frames can be accessed with a get operation at the URL:

http://<ADDRESS_of _DCU>/monitor/api/<VERSION>/images/<series>/<id>

The images will be returned in .tif format. If a requested image is not available, the request will return
HTTP 404 Not Found error. The following parameters allow special frames to be accessed in a similar
way.

EIGER R/X SIMPLON 1.6 v1.3.2 22 | 32
API Reference

D E CTH I S ? detecting the future

<base_path> = http://<address_of_dcu>/monitor/api/<version>/images/
<uri> = <base_path>/<parameter>

Table 4.9: Monitor Images Parameters

Parameter Data
Type

monitor Gets latest image from the buffer.
Default waits for 500ms for image.
Timeout via ?timeout=[ms] adjustable.
Returns 408 if no image is available.

next tif r Gets the next image and removes it from
the buffer.
Default waits for 500 ms for image.
Timeout via ?timeout=[ms] adjustable.
Returns 408 if no image available.

After an image has been requested using the monitor API commands <base_path>/monitor, <base_
path>/next or <base path>/<series>/<id> a Json dictionary is returned.

{
"state": "normal",
"critical_values": [],
"value":
[
8,
9,
614078893378,
614083892870,
4969946
1,
"value_type": "int",
"time": "rw"
}

The value array is built from the values series_id, frame_id, start_time, end_time, real_time. 1In
above example series_id is 8, frame_id is 9, start_time is 614078893378 and so forth.

4.2.3. Monitor Status Parameters

The status of the monitor can be requested at the address:

<base_path> = http://<ADDRESS_of_DCU>/monitor/api/<VERSION>/status
<uri> = <base_path>/<parameter>

EIGER R/X SIMPLON 1.6 v1.3.2 23| 32
API Reference

D E CTH I S ? detecting the future

Table 4.10: Monitor Status Parameters

Parameter Data
Type

state string State can be normal or overflow if im-
ages have been dropped.

error string[] r Returns list of status parameters causing
error condition.

buffer_fill_level int() r Returns a tuple with current number of
images and maximum number of images
in buffer.

dropped int r Number of images which were dropped
as not requested.

next_image_number int r seriesld, imageld of the last image re-
quested via images/next.

monitor_image_number int r seriesld, imageld of the last image re-

quested via images/monitor.

4.2.4. Monitor Command Parameters

To clear the buffer of images, the following command can be executed at the address
http://<address_of_dcu>/monitor/api/1.6.0/command/clear

<base_path> = http://<ADDRESS_of_DCU>/monitor/api/<VERSION>/command
<uri> = <base_path>/<parameter>

Table 4.11: Monitor Command Parameters

clear Drops all buffered images and resets
status/dropped to zero.

initialize - w Resets the monitor to its original state.

4.3. Filewriter Subsystem

The data itself, the frames, are by default written to HDF5 files, where the metadata is stored in the
NeXus compliant metadata standard. These files can be accessed through the SIMPLON API.

The filewriter subsystem writes the frames and the metadata in the NeXus format to an HDF5 file.
The base URL for the filewriter is:

EIGER R/X SIMPLON 1.6 v1.3.2 24 | 32
API Reference

D E CTH I S ? detecting the future

http://<address_of_dcu>/filewriter/api/<version>/

4.3.1. Filewriter Configuration Parameters

To configure the filewriter, this URL is used:

<base_path> = http://<address_of_dcu>/filewriter/api/<version>/config
<uri> = <base_path>/<parameter>

Table 4.12: Filewriter Config Parameters

Parameter Data
Type

mode string Operation mode of the filewriter, which
can be enabled or disabled. When dis-
abling the filewriter, data loss may occur
if data is not retrieved via another data

interface.

transfer_mode string rw Transfer mode for files written by the
filewriter. Currently, only HTTP is sup-
ported.

nimages_per_file int rw Maximum number of im-
ages stored in each

<name_pattern>_data_<file_nr>.h5
file in the HDF5 file structure created by
the filewriter.

No data files are created
and all images are stored in
<name_pattern>_master.h5 when
this parameter is set to 0.

Caution #3

r Only set to 0 when collecting a
small number of images.

image_nr_start int rw Sets the image_nr_low metadata pa-
rameter in the first HDF5 data file
<name_pattern>_data_000001.h5.
This parameter is useful when a data
set is collected in more than one HDF5
file structures. If you collect image
number m to n in the first file structure,
you can set image_nr_start to n+1 in
the subsequent file structure.

EIGER R/X SIMPLON 1.6 v1.3.2 25| 32
API Reference

D E CTH I S ? detecting the future

Table 4.12: Filewriter Config Parameters - continued

Parameter Data
Type

name_pattern string The basename of the file. The pattern
$id will include the sequence number in
the file name. series_$id is the default
name pattern, resulting in the following
names of the HDF5 file structure created
by the filewriter:
series_<sequence_nr>_master.h5,
series_<sequence_nr>_data_<filenr>.h5

Caution #4

r The filewriter will overwrite ex-
isting files with identical names
of the files to be written.

compression_enabled bool rw Enables (True) or disables (False) com-
pression of detector data written to
HDF5 files. Compression is required
for full detector performance, disabling
compression may lead to data loss
at high frame rates.For compression
modes see section 4.1.1 Detector Con-
figuration Parameters (compression).

4.3.2. Data Access

The files are created locally on the detector server and have to be transferred to the user computer.
The master file is accessible at the URL.:

http://<address_of_dcu>/data/<name_pattern>_master.hb

and the data files at:

http://<address_of_dcu>/data/<name_pattern>_data_<filenr>.hb

A get request to the URL:

http://<address_of_dcu>/filewriter/api/<version>/files/

returns a list of all available files.

EIGER R/X SIMPLON 1.6 v1.3.2 26 | 32
API Reference

D E CTH I S ? detecting the future

4.3.3. Filewriter Status Parameters

The filewriter is automatically started when data taking is started. The status of the filewriter can be
accessed at:

<base_path> = http://<address_of_dcu>/filewriter/api/<version>/status
<uri> = <base_path>/<parameter>

The following filewriter status variables are accessible:

Table 4.13: Filewriter Status Parameters

Parameter Data
Type

state string Possible states: disabled, ready, ac-
quire, error.

error string[] r Returns list of status parameters causing
error condition.

time string r Current system time.

buffer_free int r The remaining buffer space in KB.

4.3.4. Filewriter Command Parameters

Command parameters are write only. The base path to the resource is:

<base_path> = http://<address_of_dcu>/filewriter/api/<version>/command
<uri> = <base_path>/<parameter>

Table 4.14: Filewriter Command Parameters

clear Drops all data (image data and directo-
ries) on the DCU.

initialize - w Resets the filewriter to its original state.

EIGER R/X SIMPLON 1.6 v1.3.2 27 | 32
API Reference

D E CTH I S ? detecting the future

4.4. Stream Subsystem

The SIMPLON API lets you configure and read out the status of the stream.

The base URL for the stream is:

http://<address_of_dcu>/stream/api/<version>

4.4.1. Stream Configuration Parameters

To configure the stream, this URL is used:

<base_path> = http://<address_of_dcu>/stream/api/<version>/config
<uri> = <base_path>/<parameter>

Table 4.15: Stream Config Parameters

Parameter Data
Type

mode string Operation mode of the stream, which
can be enabled or disabled. When dis-
abling the stream, data loss may occur
if data is not retrieved via another data
interface.

header_detail string rw Detail of header data to be sent: Ei-
ther “all” (all header data), “basic”
(no flatfield nor pixel mask, default
setting) or "none” (no header data).

Information #10

B Choosing "basic” is recom-
mended only if the detector
configuration parameter pixel_
mask_applied is set to True.

Caution #5

rIf header_detail "none” is se-
lected, no experimental meta-
data is transferred, complicat-
ing processing and archiving of
the data. Therefore, usage of
header_detail “none” is discour-
aged.

EIGER R/X SIMPLON 1.6 v1.3.2 28 | 32
API Reference

D E C TH I S ? detecting the future

Table 4.15: Stream Config Parameters - continued

Parameter Data
Type

header_appendix string Data that is appended to the header data
as zeromq submessage.

image_appendix string rw Data that is appended to the image data
as zeromq submessage.

4.4.2. Data Access

Image and header data are transferred via zeromq sockets. The port is 9999, the scheme is Push/Pull,
i.e. the server opens a zeromqg push socket, whereas the client needs to open a zeromq pull socket.

Protocol Zeromq

Port 9999

Scheme Push/Pull

I T d o Mol [T [y Receiver connects to detector (this enables automatic load balancing if
more than 1 client is required to receive/process the data)

There are 3 types of messages, which are defined below in more detail: Global Header Data, Image
Data and End of Series. After passing the “arm” command to the detector one message containing
Global Header Data is sent over the zeromq socket. After passing “trigger” one messages per image
containing Image Data is sent. After passing "disarm”, "cancel” or "abort”, one message containing
End of Series is sent.

Global Header Data

Zeromq multipart message consisting of the following parts:

e Part 1: Json Dictionary, reading {"htype”:“dheader-1.0", "series”: <id>, "header_detail”: "all”
| “basic” | “none”}. <id> denotes the series id of the present image series.

e Part 2: (only if header_detail is "all” or "basic”): Detector configuration as json dictionary,
reading {<config parameter>: <value>}. The keys are the configuration parameters as defined
in the detector API. The values are the current configuration values. There are maximum 1 dim
arrays, which are stored as json array. Flatfield and Pixelmask and countrate_correction_table
are not part of the dictionary.

e Part 3: (only if header_detail is "all"): Flatfield Header. Json Dictionary reading {”htype”:
“dflatfield-1.0", "shape”: [x,y], "type”: <data type>?}. <data type> is always “float32" (32 bit
float) for a flatfield.

e Part 4: (only if header_detail is "all"): Flatfield data blob.

e Part 5: (only if header_detail is "all”): Pixel Mask Header. Json Dictionary reading {"htype”:
“dpixelmask-1.0", "shape”: [x,y], “type”: <data type>}. <data type> is always "uint32" (32
bit unsigned integer) for a pixel mask.

e Part 6: (only if header_detail is "all"): Pixel Mask data blob.

o Part7: (onlyif header_detail is "all"): Countrate Table Header. Json Dictionary reading { "htype”:
“dcountrate_table-1.0", "shape”: [x,y], "type”: <data type>}. <data type> is always "float32"
(32 bit float).

EIGER R/X SIMPLON 1.6 v1.3.2 29 | 32
API Reference

D E C TH I S ? detecting the future

o Part 8: (only if header_detail is "all"): Countrate Table data blob.
e Appendix (only if header_detail is "all"): Countrate Table data blob.

Example:

{"htype”:"dheader-1.0", "series”: 1, "header_detail”: "all”}
{"auto_summation”: true, “photon_energy”: 8000, ...}

{"htype”: "dflatfield-1.0", "shape”: [1030,1065], "type”: "float32"}
DATA BLOB (Flatfield)

{"htype”: “dpixelmask-1.0", "shape”: [1030,1065], “type”: “uint32”%
DATA BLOB (Pixel Mask)

{"htype”: “dcountrate_table-1.0", "shape”: [2,1000], “type”: “float32"}
DATA BLOB (countratecorrection table)

Image Data
Zeromq multipart message consisting of the following parts:

e Part 1: Json Dictionary, reading {"htype”:"dimage-1.0","series”: <series id>, "frame”: <frame
id>, "hash”: <md5>}, <series id> is the number identifying the series, <frame id> is the frame
id, i.e. the image number. <md5> is the md5 hash of the next message part.

e Part 2: {"htype”:”dimage_d-1.0", "shape”:[x,y,(z)], “type”: <data type>, "encoding”: <en-
coding>, "size”: <size of data blob>7}.

- <data type>: "uintl6” or "uint32”.

— <encoding>: String of the form "[bs<BIT>][[-]1z4][<|>]". bs<BIT> stands for bit shuffling
with <BIT> bits, 1z4 for 1z4 compression and < (>) for little (big) endian. E.g. "bs8-l1z4<”
stands for 8bit bitshuffling, 1z4 compression and little endian. 1z4 data is written as defined
at https://code.google.com/p/1z4/ without any additional data like block size etc.

— <size of data blob>: Size in bytes of the following data blob
e Part 3: Data Blob

o Part4: {"htype”:”dconfig-1.0", "start_time”: <start_time>, "stop_time”, <stop_time>, "real_time”:
<real_time>}. Begin, end and duration of the exposure of the current image in nano seconds.
The start time of first image of the series is by definition zero. The value of start_time and
stop_time is set to zero when initializing the detector system.

Information #11

— The time values are based on the clock quartz on the detector control board
and therefore have limited accuracy.

— Time values are returned in clock ticks.

e Appendix (only if image_appendix contains non-empty string): Content of API parameter im-
age_appendix

Example:

{"htype”:"dimage-1.0", “frame”: 324, "hash”: "fc67f000d08fe6b380ea9434b8362d22"}

{"htype”:"dimage_d-1.0", "shape”:[1030,1065], "type”: “uint32”, "encoding”: "1z4<”, "size”: 47398247}

DATA BLOB (Image Data)
{"htype”:“dconfig-1.0", "start_time”: 834759834260, “stop_time”, 834760834280, "real_time”: 1000000}

30| 32

https://code.google.com/p/lz4/

D E CTH I S ? detecting the future

End of Series

Zeromgq message consisting of one part containing the json string:
{"htype”: “dseries_end-1.0", "series”: <id>}

4.4.3. Stream Status Parameters

The status of the stream can be accessed at:

<base_path> = http://<address_of_dcu>/stream/api/<version>/status
<uri> = <base_path>/<parameter>

The following stream status variables are accessible:

Table 4.17: Stream Status Parameters

Parameter Data
Type

state string disabled, ready, acquire or error. After
the detector has been armed the state
becomes acquire, after disarm, abort or
cancel the state becomes ready. There
are currently no error conditions.

error string[] r Returns list of status parameters causing
error condition (currently only "state”).

dropped int r Number of images that got dropped as
not requested. After “arm” this number
is reset to zero.

4.4.4. Stream Command Parameters

Command parameters are write only. The base path to the resource is:

Table 4.18: Stream Command Parameters

initialize Resets the stream to its original state.

EIGER R/X SIMPLON 1.6 v1.3.2 31| 32
API Reference

D E CTH I S ? detecting the future

4.5. System Subsystem

The SIMPLON API lets you control the DAQ service providing the SIMPLON API.

4.5.1. System Configuration Parameters

The status of the system can be accessed at:

<base_path> = http://<address_of_dcu>/system/api/<version>/status
<uri> = <base_path>/<parameter>

Table 4.19: System Config Parameters

Parameter Data
Type

4.5.2. System Command Parameters

Command parameters are write only. The base path to the resource is:

<base_path> = http://<address_of_dcu>/system/api/<version>/command
<uri> = <base_path>/<parameter>

Table 4.20: System Command Parameters

restart Restarts the service providing the SIM-
PLON API.

EIGER R/X SIMPLON 1.6 v1.3.2 32| 32
API Reference

	Content
	Document History
	Current Document
	Changes

	General Information
	Contact and Support
	Explanation of Symbols
	Warranty Information
	Disclaimer

	Introduction – RESTlike API
	Operating the EIGER Detector System
	Acquiring Data
	Interface: http/REST
	URLs
	Tree-Like View of Resources

	SIMPLON API
	Detector Subsystem
	Detector Configuration Parameters
	Detector Status Parameters
	Detector Command Parameters

	Monitor Subsystem
	Monitor Configuration Parameters
	Data Access
	Monitor Status Parameters
	Monitor Command Parameters

	Filewriter Subsystem
	Filewriter Configuration Parameters
	Data Access
	Filewriter Status Parameters
	Filewriter Command Parameters

	Stream Subsystem
	Stream Configuration Parameters
	Data Access
	Stream Status Parameters
	Stream Command Parameters

	System Subsystem
	System Configuration Parameters
	System Command Parameters

